If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5x)^2-26(5x)+25=0
a = 5; b = -265; c = +25;
Δ = b2-4ac
Δ = -2652-4·5·25
Δ = 69725
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{69725}=\sqrt{25*2789}=\sqrt{25}*\sqrt{2789}=5\sqrt{2789}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-265)-5\sqrt{2789}}{2*5}=\frac{265-5\sqrt{2789}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-265)+5\sqrt{2789}}{2*5}=\frac{265+5\sqrt{2789}}{10} $
| -3(-10+2x)=6 | | -3x+24=27 | | 18x+1=55 | | 3(5x)=180 | | 5=7x+10x | | 7x+3(x-2)=4x+12 | | -2x+80+100=180 | | 7+8x=5x+28 | | 4/x=0.58 | | 3240=50(24)(x) | | F(2)=4x2+3 | | 4x-8=4x+96 | | 6.2x=+3.7=22.3 | | 8x=3(x+200 | | (180-x)-2=42 | | 44=x*7+x*10 | | 1=5(x+1)+16 | | 2u+45+u+22+59=180 | | 7m-17=25 | | 5x+12=76−3x | | F(2)=4c+3 | | x=(180-x)-2=42 | | 4x+23+10x-1=78+78+x | | 5/6x+1=-1.2x+1/4 | | 4x-8=4x+24 | | 3(5x-2)-5=17+x | | 42x+1=8 | | 2x+40=-12 | | -6(2x+4)+1/2(8x+3x)=-20 | | Y^3y+2=0 | | 18x8/2=13 | | 42x+1+85=180 |